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Crystal nucleation in the one-component plasma
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We have performed molecular dynamics simulations to study the kinetics of crystal nucleation in the
one-component plasma. We have monitored nucleation in the supercooled liquid phase by following the time
evolution of the size distribution of crystal nuclei formed during the phase transition. Although several obser-
vations are consistent with classical nucleation theory such as transient effects and the existence of a free-
energy barrier to crystallization, we could not unambiguously identify a critical size for the crystal nuclei
formed within the metastable phase.
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I. INTRODUCTION

It is remarkable that systems of charged particles interact-
ing via a purely repulsive �pure or screened Coulomb� inter-
action can crystallize, i.e., can spontaneously self-assemble
into macroscopic periodic lattice structures when the mean
potential energy greatly dominates the mean kinetic energy.
Wigner noted long ago that the electron gas forms a crystal at
low enough density, and two-dimensional electron crystals
have since been observed �1�. Wigner crystals are not mere
curiosities but are now observed in diverse systems such as
dusty plasmas �2�, and charged colloids �3�, laser-cooled
trapped ions �4�, and are predicted to be possible in ultracold
plasmas �5�. Interestingly, colloids and dusty plasmas are
currently used to shed new light on the freezing transition;
they are indeed easily visualized and their kinetics can be
resolved, because of the long time scales associated with
mesoscopic particles. Wigner crystallization plays also an
important role in astrophysics. For instance, the cooling evo-
lution of white dwarfs and neutron stars is significantly af-
fected by the crystallization of their interiors and crusts, re-
spectively, composed of mixtures of bare nuclei moving in a
nearly homogeneous electron background.

It is fair to say, however, that the crystallization phenom-
enon in Coulomb systems is not well understood. This is
particularly true for the two reference models, namely, the
one-component plasma �OCP� and the Yukawa OCP, used to
understand the properties of more realistic systems. The OCP
consists of a single species of charged particles immersed in
a uniform, neutralizing background; it is characterized at
temperature T and density � by the coupling parameter �
=q2 /a kBT, where a= �3/4���1/3 is the mean interparticle
distance and q the particles’ charge. In the Yukawa OCP,
particles interact through an exponentially screened Cou-
lomb potential. Although studied in great detail in the past,
much of the progress in understanding freezing in these sys-
tems has involved equilibrium aspects: the phase diagram,
entropy, and energy changes at freezing �6,7�, and quantum
effects �8�. For instance, increasingly accurate Monte Carlo
�MC� calculations have pinpointed the liquid-solid transition
of the classical OCP at �m�175 with the bcc lattice having
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the lowest possible free energy, followed closely by the fcc
lattice.

The objective of the present study is to investigate dy-
namic aspects of the crystallization in the classical OCP. We
shall focus on crystal nucleation, i.e., the process by which a
�supercooled� liquid starts to phase separate by forming
small, localized crystal nuclei within the metastable phase.
We have investigated the kinetics of nucleation using mo-
lecular dynamics �MD� simulations over a wide range of
undercooling, �m���2000. The particle-particle particle-
mesh algorithm was used to deal with the long-range Cou-
lomb interaction and allowed us to perform highly accurate
simulations over reasonable computational times of large
systems �N=16 000� over long periods of time �tsim

�70 000 in units of the inverse plasma frequency �p�. We
have monitored nucleation by following the time evolution
of the excess energy, the pair distribution function, and, most
importantly, the size distribution of crystal nuclei. We have
analyzed the observations on the basis of classical nucleation
theory �CNT� �9�, whose basic assumptions are critically re-
viewed. The salient results of this study are, first, an un-
equivocal demonstration of the occurrence of nucleation.
Second, for any particular nucleation event, the kinetics
seem to be qualitatively in accord with the predictions of
CNT: existence of a transient regime and dependence upon �
of the kinetics. However, assuming that CNT assumptions
are sound, we could not unambiguously identify a critical
size for the crystal nuclei formed within the metastable
phase, beyond which they grow spontaneously.

II. EVIDENCE OF CRYSTALLIZATION AND GENERAL
OBSERVATIONS

The method of MD has yielded much insight into the
nature of homogeneous crystal nucleation of systems
interacting via simple, short-ranged potentials �10,11�.
Hammerberg et al. reported evidence of crystallization in the
Yukawa OCP using truncated potentials and large screening
lengths �12�. As for the OCP, to our knowledge, only two
independent works based on MC simulations reported the
crystallization from the melt �13,14�. The method of MD has
the advantage of giving access to the actual kinetics of the
phase transition. Note that MD was recently used to look at
©2006 The American Physical Society-1
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size effects in melting of the OCP, the opposite side of the
coin from crystallization �15�.

We employed a Nosé-Hoover thermostat to maintain the
system at constant temperature �N ,V ,T ensemble�. The time
step is �t=0.01/�p, which ensures good �Nosé-Hoover� en-
ergy conservation ��E /E�10−6�. We performed “instanta-
neous” quenches in the range �m���2000, i.e., starting
from an initial random particle configuration at �	�m, the
system then evolves freely at this value; to improve the sta-
tistics, different initial configurations were also used. Figure
1 shows, for a sample of simulations, the time evolution of
the instantaneous excess energy Uex�t�. In the N ,V ,T en-
semble, the onset of crystallization is marked by the decrease
in the pressure P, or equivalently in Uex since Uex=3�PV
−NkBT� �V=volume�. Crystallization is also evidenced by
the pair distribution functions as shown in Fig. 2. In the
range �m��
250, simulations showed no indication of
freezing over the simulation length tsim. The system settles
into a supercooled liquid state, whose average excess energy
reproduces to excellent accuracy the MC data of DeWitt et
al. �6�. The large degree of observed undercooling without
crystallization demonstrates the existence of a kinetic barrier
to the transformation. The route found by the system to over-
come that barrier and reach the minimum of the free energy
involves nucleation followed by growth and coalescence of
crystal nuclei. The rate at which the nuclei form is extraor-
dinarily sensitive to the extent of penetration into the super-

FIG. 1. �Color online� Evolution of the excess energy for differ-
ent values of � �Uex is normalized to the absolute value of the bcc
lattice excess energy Ubcc�. The dashed lines are the thermodynamic
excess energy of �6�. Two simulations at �=500,1000 are shown.
Here N=1024.
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cooled region, and our results suggest that rate is certainly
very small near �=�m. This makes simulating the crystalli-
zation process right above �m challenging since the liquid
phase remains metastable for a period of time much longer
than achievable simulation times tsim. At large enough under-
cooling, �	250, the nucleation rate is small enough to make
nucleation occurring over tsim: crystal nuclei form and Uex
drops rapidly to a value slightly larger than the excess energy
Ubcc of the bcc lattice. We always observed crystallization
when 250���1000 and the final configuration is almost
always an imperfect bcc crystal with a variety of lattice de-
fects �see Fig. 2�; only one simulation at �=1000 ended with
an imperfect fcc lattice. Figure 1 also reveals a strong depen-
dence of Uex�t� upon � and the initial configuration. Below
�=300, the system remains in a supercooled liquid state for
some period of time, which decreases with �. When 300
���1000, no such transient regime is observed and Uex�t�
drops rapidly to its final value over a time that tends to
increase with ��400. At very high undercooling �=2000,
we did not observe crystallization and the system stayed in a
metastable state. It is worth noting that our results corrobo-
rate the MC results of DeWitt et al. �13�.

III. FINITE-SIZE EFFECTS

A major question is whether the periodic boundary condi-
tions affect the nucleation. Because nucleation rate in a bulk
sample is proportional to its volume, the simulated nucle-
ation rate should be proportional to N if the nucleation is
truly homogeneous. In �16�, the authors found �with
Lennard-Jones systems� that the nucleation rate decreased
with N from 108 to 1500, showing that the nucleation must
have been induced by the periodic boundary conditions.
Later, MD results for Lennard-Jones systems using up to 106

particles suggested that by 15 000 particles the effects of
system size dependence had disappeared, but that the
million-particle system was necessary to exhibit the full di-

FIG. 2. �Color online� Comparison of the final pair distribution
function g�r� in a simulation at �=400 �N=4394� with the bcc and
fcc g�r� at �=400.
versity in nucleation behavior of a macroscopic system �10�.
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Figure 3 shows the evolution of Uex for �=400 and N vary-
ing from 250 to 16 000 particles. In all cases, Uex starts drop-
ping to its final value just after the simulation begins. The
initial decay rate, however, decreases with N from 250 to
4396, and is larger with N=16 000 than with N=4394, which
is reminiscent of the above mentioned size effect observed in
�16�. Moreover, for N=16 000, Uex decreases steadily, sug-
gesting that the so-called catastrophic growth observed at
smaller N is certainly another size effect. We shall mention
later that the final distributions of nuclei are essentially inde-
pendent of N. We also note that the choice of N at a bcc
�N=2n2�, fcc �N=4n3�, or any other number appears to bear
no essential consequences to the solidification process. All
the conclusions drawn in this paper are based on simulations
with 4374 and 16 000 particles, for which size effects be-
come negligible, at least during the initial nucleation dynam-
ics. The subsequent coalescence of crystal nuclei is certainly
affected by size effects.

IV. THE NUCLEATION DYNAMICS

In order to extract detailed information on the nucleation
dynamics itself, it is essential to identify and monitor the
time evolution of crystal nuclei, which is by no means
straightforward. We used two distinct methods, the Voronoi
polyhedron analysis and the local bond-order parameter
analysis �see the Appendix�. Both methods consist of exam-
ining the local coordination about particles, which, because it
differs between liquid and crystal, allows one to distinguish
“liquid” particles from “solid” particles. Crystal nuclei are
then identified by counting the connections between the sol-
idlike particles. As illustrated in the Appendix, both methods
agree very well with one another, thereby ensuring the reli-
ability of our identification procedure and of the analysis
discussed in the following. In the following, at any time t,
N�p , t� denotes the number of nuclei of size p	1, Nnuc�t�
=�p	1N�p , t� the total number of nuclei, Ns�t�
=�p	1pN�p , t� the total number of solid particles, Np

=� N�p , t� the number of nuclei of size larger than p,

FIG. 3. �Color online� Dependence upon N of Uex�t� at �=400.
Dashed lines: excess energy of �6� for the liquid and bcc lattice.
p��p �
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and p*�t� the size of the largest nucleus. Figure 4 illustrates
the typical evolution of Nnuc, Ns, p*, and Np with p from 10
to 40 for a simulation at �=400 and N=4394. Similar evo-
lutions were obtained with other � values, and the following
discussion is based upon all the cases studied. Initially, there
are no crystal nuclei in the supercooled liquid. Eventually a
few solid particles appear, and small nuclei form and grow
�note the correlation between crystal nuclei growth and the
decay of Uex, Fig. 3�. Eventually, the different quantities stop
increasing and fluctuate around a nearly constant mean value
until the end of the simulation. This sudden change occurs
probably because of the significant depletion of liquidlike
particles. The final system is a mosaic of large nuclei sepa-
rated by liquid particles and small nuclei that attach and
detach to the existing nuclei without effectively creating new
large ones. Moreover the diffusion coefficient is very small
but finite. Other general observations are worth noting. The
final ratio Ns /N varies with �, N ��500�, and the initial
configuration in a relatively wide range, Ns /N�0.6−0.9.
However, independently of � and N, the average number of
particles per nucleus Nnuc /Ns reaches the value �10, and p*

fluctuates with time around the value p*�40 particles.
During the nucleation phase, Nnuc and Ns first grow non-

linearly but then grow nearly linearly, e.g., Nnuc�t��JMD�t
−�MD�, t��MD �see Fig. 4� where both JMD and �MD obvi-
ously depend on �. Such behavior can be understood quali-
tatively on the basis of CNT. CNT is a phenomenological
theory that involves a set of coupled rate equations for the

FIG. 4. �Color online� Time evolution of Nnuc, p*, Ns �right
axis�, and Np �from top to bottom p=10,15,20,30,40� in a simu-
lation at �=400 and N=4394. See also Fig. 9 for results with �
=300 and N=4394.
number density N�p , t� /V by which crystal nuclei grow or
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shrink via the attachment or loss of single particles. In its
most common formulation, CNT assumes that a steady state
is rapidly established such that the rates at which nuclei of
size i grow to size i+1 are constant �denoted J0� and inde-
pendent of time and p. The steady state approximation was
used, for instance, in �12� to interpret MD simulations of the
Yukawa OCP, in �17� as a model of crystallization in neutron
stars, and in �18� to predict the glass transition in the OCP.
This approximation leads to the linear relation Nnuc�t� /V
=�0

t J0dt=J0t, which contrasts with our observations. It is
therefore important to take account of transient nucleation
behavior in interpreting crystallization kinetics, which chal-
lenges the conclusions of the above-cited works �12,17,18�.
When transient effects are considered, CNT predicts a time-
dependent nucleation rate J�t�=J0�1−exp�−t /���, where � is
an effective time lag. The nucleation rate is initially low and
increases to a steady state value J0, over a transient time ��.
At large time, Nnuc�J0�t−��, in agreement with our results
if one assumes J0=JMD and �=�MD; the overall MD nucle-
ation rate, however, is not well reproduced by J�t�.

According to CNT, J0 and � result from the competition
of a thermodynamic factor proportional to exp�−�F* /kBT�
and a kinetic factor proportional to exp�−�E /kBT�. The
former reflects that nucleation is an activated process; a free-
energy barrier �F*=16��3 /3�f2 must be overcome in order
to form �spherical� nuclei of a critical size pc, from which the
stable phase will grow; here �f is the difference in �Hel-
moltz� free energies between the solid and liquid phases and
� is the surface energy density. The kinetic factor describes
the rate of attachment of particles to a critical nucleus. Liq-
uid particles are assumed to diffuse until they “jump” from
the liquid to the solid phase, by overcoming the same acti-
vation barrier �E as in the liquid; for the OCP, we recently
evaluated �E /kBT=0.008� �19�. In order to see how J0 and
� vary with �, we evaluated �f using the results of �6� and
assumed the hard-sphere result �
kBT /a2 �20�. The results
�not shown here� reproduce only qualitatively the variations
with � of JMD and �MD. The nucleation rate varies by orders
of magnitude because of the exponentiations and goes
through a maximum at �c, when � is increased above �m �9�;
� reaches a minimum at �c and pc decreases from a few
hundreds near �m to less than one at high enough �. These
variations explains why nucleation appears as a sudden phe-
nomenon when the liquid OCP is deeply undercooled to �
	300. A rigorous comparison, however, is difficult; for in-
stance, one could not use the expression for J0 to calculate
the surface energy � �the only unknown parameter� from the
measured JMD. In fact, we could not clearly recognize, in
each run, when the nuclei become of critical size. In all
cases, Nnuc starts its quick rise when p�20–25 particles,
independently of �. Therefore, if the concept of a critical
size is correct, this size is certainly very small, pc�20–25
�for ��250� but is nevertheless larger than the 14 nearest
neighbors in a bcc lattice. Note that here surface particles are
counted in pc �see the Appendix�.

Other assumptions underlying CNT are also questionable.
The nuclei present a wide range of morphologies and can not
be regarded as spherical as supposed in CNT. Moreover, in

CNT, nuclei grow or shrink via the attachment or loss of
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single molecules. Detailed analysis revealed, however, that
many of nuclei and liquid particles collide and fuse for some
period of time and may fission into two or more other nuclei.
It is also possible that the proper description of nucleation
should involve collective modes, predominant in the OCP;
local fluctuations could indeed lead to the sudden appearance
of crystal nuclei elsewhere.

V. SUMMARY

We have studied the onset of crystallization of a super-
cooled one-component plasma with MD simulations. We
have analyzed the results on the basis of CNT. We have
pointed out the importance of considering the transient pe-
riod, especially near �m. The variations with � and the nucle-
ation kinetics are consistent with CNT. We could not, how-
ever, identify unambiguously a critical nucleus size. Further
studies and better statistics should allow us to test CNT in
more detail and to study the effect of collective modes al-
luded before. Such a thorough study with molecular dynam-
ics would certainly benefit from sophisticated Monte Carlo
simulations to estimate key quantities in CNT such as �F*,
pc, and the kinetic prefactor �21�. This work could be ex-
tended to investigate the crystallization kinetics in Coulomb
mixtures and the effect of impurities on nucleation, as en-
countered in astrophysical objects.
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APPENDIX: VORONOI POLYHEDRON AND LOCAL
BOND-ORDER PARAMETER ANALYSIS

The unequivocal identification of a crystal nucleus in a
molecular dynamics simulation is difficult. We used two dis-
tinct methods, the �modified� Voronoi polyhedron analysis
and the local bond-order analysis. For more details on the
Voronoi polyhedron analysis, see �10,22,23�. For more de-
tails on the local bond-order parameter analysis, see �21�.

Voronoi polyhedron analysis

The Voronoi polyhedron associated with a given particle
is defined as the set of all points of space that are closer to
that particle than to any of the others. In a perfect crystal, the
Voronoi polyhedron reduces to the Wigner-Seitz cell. The
shape of a Voronoi polyhedron is an indication of the
nearest-neighbor environment of a particle, and can be used
to classify the coordination of each particle as being either
bcc, fcc, or otherwise. Following �22�, the signature of a
�-faced Voronoi polyhedron is defined by a set of integers
�n3 ,n4 , . . . �, where nl is the number of l-sided faces of the
polyhedron, and �=�l	3nl. For example, the Voronoi poly-
hedron of a particle in a perfect bcc lattice is a truncated
octahedron that has six square-shaped and eight hexagonal-
shaped faces, and its signature is �0,6 ,0 ,8 , . . . �. The Voronoi
-4
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polyhedron of a particle in a perfect fcc structure is a rhom-
bic dodecahedron that has 12 lozenge-shaped faces, and its
signature is �0,12,0 ,0 , . . . �. As illustrated in Figs. 5 and 6,
in a physical system, the thermal motions of the particles
affect significantly the distribution of signatures of the
Voronoi polyhedra. For instance, the characteristic Voronoi
polyhedron associated with the fcc lattice is affected by the
smallest perturbations of the particle positions from their
positions in a perfect lattice. The reason for that is that of
the 14 vertices of the rhombic dodecahedron there are six
where four faces meet. Any thermal motion destroys these
fourfold vertices, which break up into sets of threefold ver-
tices connected by short edges. The result is that a variety of
polyhedra with signatures �0,4 ,4 ,6 , . . . �, �0,3 ,6 ,5 ,0 , . . . �,
�0,3 ,6 ,4 ,0 , . . . �,�0,4 ,4 ,7 ,0 , . . . � , . . . occur in a thermally

FIG. 5. �Color online� Histograms from MD simulations of the
number of faces of Voronoi polyhedra in an OCP at �=260 in the
supercooled liquid state �i.e., before nucleation�, the bcc phase, and
the fcc phase.

FIG. 6. Histograms from MD simulations of the distribution of
signatures of Voronoi polyhedra for the OCP at �=260 in the su-
percooled liquid phase �before nucleation�, the bcc phase, and the
fcc phase. We only show the signatures whose proportion is larger
than 1.5%; all the other signatures are gathered in the bottom bar
labeled “others.” The perfect bcc and fcc signatures are
�0,6 ,0 ,8 , . . . � and �0,12,0 ,0 , . . . �, respectively. We note that the
�0,12,0 ,0 , . . . � signature does not appear in the histogram for fcc.
Indeed thermal distortions destroy the fourfold vertices of the rhom-
bic dodecahedron, which results in a variety of polyhedra that have
threefold vertices only. The bcc polyhedron is much more stable as

evidenced by the large proportion of �0,6 ,0 ,8 , . . . � signatures.
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equilibrated fcc crystal. The bcc Voronoi polyhedron, with
only threefold vertices, is much more stable against thermal
distortions, although the number of different signatures in-
creases as one approaches to the liquid-solid transition line.
In order to cope with the effect of thermal fluctuations and to
identify fcc crystalline regions, we used the modified
Voronoi polyhedron analysis advocated in �10�. For each par-
ticle configuration sampled along the trajectory, the modified
analysis consists of a short steepest-descent energy miniza-
tion toward an inherent structure followed by a Voronoi poly-
hedron analysis of the latter.

The Voronoi analysis provides a convenient definition of
neighboring particles. If the Voronoi polyhedra associated
with two particles have a face in common, we say the two
particles are neighbors. For instance each particle of a perfect
bcc lattice has 14 neighbors, while a particle in a perfect fcc

FIG. 7. �Color online� �upper panel� Histograms from MD simu-
lations of the dot product q6�i� ·q6�j� in an OCP at �=260 in the
supercooled liquid state, the bcc phase, and the fcc phase. In each
case, the distribution function is the superposition of 100 histo-
grams obtained for 100 configurations separated in time by 2/�p

along the system trajectory. �Lower panel� Histograms of the num-
ber of connections per particle in an OCP at �=260. In each case,
the histogram was obtained by averaging over the 100 configura-
tions shown in the upper panel.
lattice has 12 neighbors. This definition of neighbors allows
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us to identify solid nuclei. For instance, we say that any two
particles that are in a bcc environment, i.e., the signature of
their Voronoi polyhedron is �0,6 ,0 ,8 , . . . � for both particles,
and are also neighbors are part of the same solid nucleus.

Local bond-order parameter analysis

For the identification of solidlike particles, we seek to
define a criterion that allows us to distinguish between the
liquid on the one hand, and all possible solid structures on
the other. Frenkel and collaborators defined such a criterion
based on local bond-order parameters, which provide a mea-
sure of the local structure around a particle �see Ref. �21� for
details�. The authors successfully applied this criterion to
Lennard-Jones and hard-sphere systems. We show below that
this criterion applies also to OCP systems. For a particle
labeled i, we define a ��2�6�+1�-dimensional complex vec-
tor q6�i� with the components

q6m�i� =
1

Nb�i� �
j=1

Nb�i�

Y6m�r̂ij�

where m=−6, . . . ,6, the sum goes over all neighboring par-
ticles Nb�i� of particle i, and Y6m�r̂ij� are the spherical har-
monics evaluated for the normalized direction vector r̂ij be-
tween particle i and its neighbor j. Neighbors are defined as
before: two particles are neighbors if their Voronoi polyhedra
have a face in common. We also define a dot product of the
vectors q6 of neighboring particles i and j,

q6�i� · q6�j� 	 �
m=−6

6

q6m
* �i�q6m�j� ,

where the asterisk indicates the complex conjugate. In simple
liquids we expect that there is no preferred orientation
around a particle and, therefore, we expect the degree of
orientational correlations q6�i� ·q6�j� of the vectors q6�i� and

FIG. 8. Comparison between the total number of nuclei Nnuc and
the largest nucleus size p* as obtained with the Voronoi polyhedron
analysis �black lines� and with the local bond-order parameter
analysis �gray lines�. Here �=300 and N=4394.
q6�j� to be small. In contrast, for a particle with a crystal-
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linelike environment the vector orientations are correlated
and we expect q6�i� ·q6�j� to be much larger. In Fig. 7, we
show histograms of the dot product q6�i� ·q6�j� of the OCP at
�=260 in the liquid state, the bcc phase, and the fcc phase.
The relevant solid structures, which for the OCP system are
bcc and fcc, yield much higher values for the dot product
than the liquid. Two neighboring particles i and j are then
said to be connected if the dot product q6�i� ·q6�j� exceeds a
certain threshold; in this paper we chose a threshold value
equal to 20. We show in Fig. 7 the histograms for the number
of connections per particles in a liquid OCP as well as in a
bcc and fcc OCP at �=260. The number of connections is
much smaller for a particle in a liquid than in a solid. The
peak for the bcc structure is at 14, which corresponds exactly
to the number of nearest neighbors in a perfect lattice. For
the fcc structure, the peak is shifted to higher values �around
13–14� with respect to the number of nearest neighbors in a
perfect fcc lattice �12�, which indicates that at �=260 the fcc
structure is relatively more disordered than the bcc structure
�recall that the fcc free energy is higher than for the bcc�; the
OCP fcc structure is strongly affected by thermal fluctua-
tions. In order to unambiguously distinguish between liquid-
like and solidlike particles, we impose a threshold on the
number of connections a particle has with its neighbors. All
particles with less �more� connections than this threshold are
considered to be liquid-like �solidlike�. We should keep in
mind that, in a small nucleus, most particles are at the sur-

FIG. 9. Evolution of the ratio Ns /N and p* for different total
number of particles N for an OCP with �=400.
face and that they should be considered as solidlike. We
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found that this is achieved if we choose threshold value be-
tween 6 and 8; the results shown in this paper were obtained
with a threshold value equal to 7. Now that we have a crite-
rion to distinguish between liquidlike and solidlike particles,
we can define solid nuclei as follows: a solid nucleus is a set
of solidlike particles that are connected. Note that here no
distinction is made between different crystal structures.
Moreover, whereas the number of particles depends some-
what on the choice of the threshold values, the conclusions
drawn in our present study are insensitive to the threshold
values used.

Comparison between the two analyses

In Fig. 8 we compare the results obtained with the two
methods for an OCP at �=300 and N=4394. As mentioned
056407
in the paper, both methods yield results in very good agree-
ment with each other and our conclusions are independent of
the analysis used. We note that the total number of nuclei
obtained with the local bond-order parameter analysis is al-
ternatively smaller at shorter times and larger at larger times
than the number obtained with the Voronoi polyhedron
analysis; the same trend was noticed for all the � values we
looked at. The Voronoi polyhedron analysis therefore tends
to lead to a critical size pc slightly larger to the one found
with the other analysis technique.

Size effects

Finally, for completeness, Fig. 9 compares the variation of
Ns /N and p* obtained with MD for different number of par-
ticles N.
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